Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Virol J ; 20(1): 14, 2023 01 25.
Article in English | MEDLINE | ID: covidwho-2214604

ABSTRACT

BACKGROUND: Viral shedding and neutralizing antibody (NAb) dynamics among patients hospitalized with severe coronavirus disease 2019 (COVID-19) and immune correlates of protection have been key questions throughout the pandemic. We investigated the duration of reverse transcriptase-polymerase chain reaction (RT-PCR) positivity, infectious viral shedding and NAb titers as well as the association between NAb titers and disease severity in hospitalized COVID-19 patients in Denmark 2020-2021. MATERIALS AND METHODS: Prospective single-center observational cohort study of 47 hospitalized COVID-19 patients. Oropharyngeal swabs were collected at eight time points during the initial 30 days of inclusion. Serum samples were collected after a median time of 7 (IQR 5 - 10), 37 (IQR 35 - 38), 97 (IQR 95 - 100), and 187 (IQR 185 - 190) days after symptom onset. NAb titers were determined by an in-house live virus microneutralization assay. Viral culturing was performed in Vero E6 cells. RESULTS: Patients with high disease severity had higher mean log2 NAb titers at day 37 (1.58, 95% CI [0.34 -2.81]), 97 (2.07, 95% CI [0.53-3.62]) and 187 (2.49, 95% CI [0.20- 4.78]) after symptom onset, compared to patients with low disease severity. Peak viral load (0.072, 95% CI [- 0.627 - 0.728]), expressed as log10 SARS-CoV-2 copies/ml, was not associated with disease severity. Virus cultivation attempts were unsuccessful in almost all (60/61) oropharyngeal samples collected shortly after hospital admission. CONCLUSIONS: We document an association between high disease severity and high mean NAb titers at days 37, 97 and 187 after symptom onset. However, peak viral load during admission was not associated with disease severity. TRIAL REGISTRATION: The study is registered at https://clinicaltrials.gov/ (NCT05274373).


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Prospective Studies , Antibodies, Viral
2.
Lancet Reg Health Eur ; 21: 100479, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1977613

ABSTRACT

Background: Introduction of the Omicron variant caused a steep rise in SARS-CoV-2 infections despite high vaccination coverage in the Danish population. We used blood donor serosurveillance to estimate the percentage of recently infected residents in the similarly aged background population with no known comorbidity. Methods: To detect SARS-CoV-2 antibodies induced due to recent infection, and not vaccination, we assessed anti-nucleocapsid (anti-N) immunoglobulin G (IgG) in blood donor samples. Individual level data on SARS-CoV-2 RT-PCR results and vaccination status were available. Anti-N IgG was measured fortnightly from January 18 to April 3, 2022. Samples from November 2021 were analysed to assess seroprevalence before introduction of the Omicron variant in Denmark. Findings: A total of 43 088 donations from 35 309 Danish blood donors aged 17-72 years were screened. In November 2021, 1·2% (103/8 701) of donors had detectable anti-N IgG antibodies. Adjusting for test sensitivity (estimates ranging from 74%-81%) and November seroprevalence, we estimate that 66% (95% confidence intervals (CI): 63%-70%) of the healthy, similarly aged Danish population had been infected between November 1, 2021, and March 15, 2022. One third of infections were not captured by SARS-CoV-2 RT-PCR testing. The infection fatality rate (IFR) was 6·2 (CI: 5·1-7·5) per 100 000 infections. Interpretation: Screening for anti-N IgG and linkage to national registers allowed us to detect recent infections and accurately assess assay sensitivity in vaccinated or previously infected individuals during the Omicron outbreak. The IFR was lower than during previous waves. Funding: The Danish Ministry of Health.

3.
PLoS One ; 17(7): e0272298, 2022.
Article in English | MEDLINE | ID: covidwho-1963049

ABSTRACT

Virus neutralization assays provide a means to quantitate functional antibody responses that block virus infection. These assays are instrumental in defining vaccine and therapeutic antibody potency, immune evasion by viral variants, and post-infection immunity. Here we describe the development, optimization and evaluation of a live virus microneutralization assay specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this assay, SARS-CoV-2 clinical isolates are pre-incubated with serial diluted antibody and added to Vero E6 cells. Replicating virus is quantitated by enzyme-linked immunosorbent assay (ELISA) targeting the SARS-CoV-2 nucleocapsid protein and the standardized 50% virus inhibition titer calculated. We evaluated critical test parameters that include virus titration, assay linearity, number of cells, viral dose, incubation period post-inoculation, and normalization methods. Virus titration at 96 hours was determined optimal to account for different growth kinetics of clinical isolates. Nucleocapsid protein levels directly correlated with virus inoculum, with the strongest correlation at 24 hours post-inoculation. Variance was minimized by infecting a cell monolayer, rather than a cell suspension. Neutralization titers modestly decreased with increasing numbers of Vero E6 cells and virus amount. Application of two different normalization models effectively reduced the intermediate precision coefficient of variance to <16.5%. The SARS-CoV-2 microneutralization assay described and evaluated here is based on the influenza virus microneutralization assay described by WHO, and are proposed as a standard assay for comparing neutralization investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Humans , Neutralization Tests/methods , Nucleocapsid Proteins , Spike Glycoprotein, Coronavirus
4.
J Clin Virol ; 153: 105214, 2022 08.
Article in English | MEDLINE | ID: covidwho-1945516

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic has resulted in massive testing by Rapid Antigen Tests (RAT) without solid independent data regarding clinical performance being available. Thus, decision on purchase of a specific RAT may rely on manufacturer-provided data and limited peer-reviewed data. METHODS: This study consists of two parts. In the retrospective analytical part, 33 RAT from 25 manufacturers were compared to RT-PCR on 100 negative and 204 positive deep oropharyngeal cavity samples divided into four groups based on RT-PCR Cq levels. In the prospective clinical part, nearly 200 individuals positive for SARS-CoV-2 and nearly 200 individuals negative for SARS-CoV-2 by routine RT-PCR testing were retested within 72 h for each of 44 included RAT from 26 manufacturers applying RT-PCR as the reference method. RESULTS: The overall analytical sensitivity differed significantly between the 33 included RAT; from 2.5% (95% CI 0.5-4.8) to 42% (95% CI 35-49). All RAT presented analytical specificities of 100%. Likewise, the overall clinical sensitivity varied significantly between the 44 included RAT; from 2.5% (95% CI 0.5-4.8) to 94% (95% CI 91-97). All RAT presented clinical specificities between 98 and 100%. CONCLUSION: The study presents analytical as well as clinical performance data for 44 commercially available RAT compared to the same RT-PCR test. The study enables identification of individual RAT that has significantly higher sensitivity than other included RAT and may aid decision makers in selecting between the included RAT. FUNDING: The study was funded by a participant fee for each test and the Danish Regions.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Prospective Studies , Retrospective Studies , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Int J Infect Dis ; 116: 289-292, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1633307

ABSTRACT

OBJECTIVES: To evaluate long-term sensitivity for detection of total antibodies against SARS-CoV-2 METHODS: From week 41, 2020, through week 26, 2021, all Danish blood donations were tested for SARS-CoV-2 antibodies with the Wantai assay. The results were linked with polymerase chain reaction (PCR) test results from the Danish Microbiological Database (MiBa). RESULTS: During the study period, 105,646 non-vaccinated Danish blood donors were tested for SARS-CoV-2 antibodies, and 3,806 (3.6%) had a positive PCR test before the blood donation. Among the donors with a positive PCR test, 94.2% subsequently also had a positive antibody test. The time between the positive PCR test and the antibody test was up to 15 months and there was no evidence of a decline in proportion with detectable antibodies over time. A negative serological result test was associated with a higher incidence of re-infection (Incidence Rate Ratio = 0.102 (95% confidence interval (CI): 0.039-0.262)). CONCLUSION: Among healthy blood donors, 94.2% developed SARS-CoV-2 antibodies after infection, and a lack of detectable antibodies was associated with re-infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Humans , Reinfection , Seroepidemiologic Studies , Serologic Tests
6.
J Infect Dis ; 225(2): 219-228, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1522221

ABSTRACT

BACKGROUND: Studies presenting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) for healthy individuals are warranted. We estimate IFR by age and comorbidity status using data from a large serosurvey among Danish blood donors and nationwide data on coronavirus disease 2019 (COVID-19) mortality. METHODS: Danish blood donors aged 17-69 years donating blood October 2020-February 2021 were tested with a commercial SARS-CoV-2 total antibody assay. IFR was estimated for weeks 11 to 42, 2020 and week 43, 2020 to week 6, 2021, representing the first 2 waves of COVID-19 epidemic in Denmark. RESULTS: In total, 84944 blood donors were tested for antibodies. The seroprevalence was 2% in October 2020 and 7% in February 2021. Among 3898039 Danish residents aged 17-69 years, 249 deaths were recorded. The IFR was low for people <51 years without comorbidity during the 2 waves (combined IFR=3.36 per 100000 infections). The IFR was below 3‰ for people aged 61-69 years without comorbidity. IFR increased with age and comorbidity but declined from the first to second wave. CONCLUSIONS: In this nationwide study, the IFR was very low among people <51 years without comorbidity.


Subject(s)
Antibodies, Viral/blood , Blood Donors , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , COVID-19/blood , COVID-19/epidemiology , Comorbidity , Denmark/epidemiology , Female , Humans , Male , Middle Aged , Seroepidemiologic Studies , Young Adult
7.
PLoS Pathog ; 17(11): e1010068, 2021 11.
Article in English | MEDLINE | ID: covidwho-1518369

ABSTRACT

Mink, on a farm with about 15,000 animals, became infected with SARS-CoV-2. Over 75% of tested animals were positive for SARS-CoV-2 RNA in throat swabs and 100% of tested animals were seropositive. The virus responsible had a deletion of nucleotides encoding residues H69 and V70 within the spike protein gene as well as the A22920T mutation, resulting in the Y453F substitution within this protein, seen previously in mink. The infected mink recovered and after free-testing of 300 mink (a level giving 93% confidence of detecting a 1% prevalence), the animals remained seropositive. During further follow-up studies, after a period of more than 2 months without any virus detection, over 75% of tested animals again scored positive for SARS-CoV-2 RNA. Whole genome sequencing showed that the viruses circulating during this re-infection were most closely related to those identified in the first outbreak on this farm but additional sequence changes had occurred. Animals had much higher levels of anti-SARS-CoV-2 antibodies in serum samples after the second round of infection than at free-testing or during recovery from initial infection, consistent with a boosted immune response. Thus, it was concluded that following recovery from an initial infection, seropositive mink were readily re-infected by SARS-CoV-2.


Subject(s)
COVID-19/veterinary , COVID-19/virology , Mink/immunology , Mink/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Farms , Follow-Up Studies , Humans , Mutation , Pharynx/virology , Phylogeny , RNA, Viral , Reinfection/virology , Whole Genome Sequencing
8.
Microbiol Spectr ; 9(2): e0090421, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1476401

ABSTRACT

Most individuals seroconvert after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but being seronegative is observed in 1 to 9%. We aimed to investigate the risk factors associated with being seronegative following PCR-confirmed SARS-CoV-2 infection. In a prospective cohort study, we screened health care workers (HCW) in the Capital Region of Denmark for SARS-CoV-2 antibodies. We performed three rounds of screening from April to October 2020 using an enzyme-linked immunosorbent assay (ELISA) method targeting SARS-CoV-2 total antibodies. Data on all participants' PCR for SARS-CoV-2 RNA were captured from national registries. The Kaplan-Meier method and Cox proportional hazards models were applied to investigate the probability of being seronegative and the related risk factors, respectively. Of 36,583 HCW, 866 (2.4%) had a positive PCR before or during the study period. The median (interquartile range [IQR]) age of 866 HCW was 42 (31 to 53) years, and 666 (77%) were female. After a median of 132 (range, 35 to 180) days, 21 (2.4%) of 866 were seronegative. In a multivariable model, independent risk factors for being seronegative were self-reported asymptomatic or mild infection hazard ratio (HR) of 6.6 (95% confidence interval [CI], 2.6 to 17; P < 0.001) and body mass index (BMI) of ≥30, HR 3.1 (95% CI, 1.1 to 8.8; P = 0.039). Only a few (2.4%) HCW were not seropositive. Asymptomatic or mild infection as well as a BMI above 30 were associated with being seronegative. Since the presence of antibodies against SARS-CoV-2 reduces the risk of reinfection, efforts to protect HCW with risk factors for being seronegative may be needed in future COVID-19 surges. IMPORTANCE Most individuals seroconvert after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but negative serology is observed in 1 to 9%. We found that asymptomatic or mild infection as well as a BMI above 30 were associated with being seronegative. Since the presence of antibodies against SARS-CoV-2 reduces the risk of reinfection, efforts to protect HCW with risk factors for being seronegative may be needed in future COVID-19 surges.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing , Health Personnel/statistics & numerical data , SARS-CoV-2/immunology , Adult , COVID-19/immunology , COVID-19 Nucleic Acid Testing , Cohort Studies , Coronavirus Nucleocapsid Proteins/immunology , Denmark , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Phosphoproteins/immunology , Polymerase Chain Reaction , RNA, Viral/analysis , Seroconversion , Spike Glycoprotein, Coronavirus/immunology
9.
Clin Microbiol Infect ; 28(5): 710-717, 2022 May.
Article in English | MEDLINE | ID: covidwho-1415294

ABSTRACT

OBJECTIVES: Antibodies to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are a key factor in protecting against coronavirus disease 2019 (COVID-19). We examined longitudinal changes in seroprevalence in healthcare workers (HCWs) in Copenhagen and the protective effect of antibodies against SARS-CoV-2. METHODS: In this prospective study, screening for antibodies against SARS-CoV-2 (ELISA) was offered to HCWs three times over 6 months. HCW characteristics were obtained by questionnaires. The study was registered at ClinicalTrials.gov, NCT04346186. RESULTS: From April to October 2020 we screened 44 698 HCWs, of whom 2811 were seropositive at least once. The seroprevalence increased from 4.0% (1501/37 452) to 7.4% (2022/27 457) during the period (p < 0.001) and was significantly higher than in non-HCWs. Frontline HCWs had a significantly increased risk of seropositivity compared to non-frontline HCWs, with risk ratios (RRs) at the three rounds of 1.49 (95%CI 1.34-1.65, p < 0.001), 1.52 (1.39-1.68, p < 0.001) and 1.50 (1.38-1.64, p < 0.001). The seroprevalence was 1.42- to 2.25-fold higher (p < 0.001) in HCWs from dedicated COVID-19 wards than in other frontline HCWs. Seropositive HCWs had an RR of 0.35 (0.15-0.85, p 0.012) of reinfection during the following 6 months, and 2115 out of 2248 (95%) of those who were seropositive during rounds one or two remained seropositive after 4-6 months. The 133 of 2248 participants (5.0%) who seroreverted were slightly older and reported fewer symptoms than other seropositive participants. CONCLUSIONS: HCWs remained at increased risk of infection with SARS-CoV-2 during the 6-month period. Seropositivity against SARS-CoV-2 persisted for at least 6 months in the vast majority of HCWs and was associated with a significantly lower risk of reinfection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Cohort Studies , Denmark/epidemiology , Health Personnel , Humans , Prospective Studies , Reinfection , Seroepidemiologic Studies
10.
Animals (Basel) ; 11(1)2021 Jan 12.
Article in English | MEDLINE | ID: covidwho-1024522

ABSTRACT

SARS-CoV-2 infection is the cause of COVID-19 in humans. In April 2020, SARS-CoV-2 infection in farmed mink (Neovision vision) occurred in the Netherlands. The first outbreaks in Denmark were detected in June 2020 in three farms. A steep increase in the number of infected farms occurred from September and onwards. Here, we describe prevalence data collected from 215 infected mink farms to characterize spread and impact of disease in infected farms. In one third of the farms, no clinical signs were observed. In farms with clinical signs, decreased feed intake, increased mortality and respiratory symptoms were most frequently observed, during a limited time period (median of 11 days). In 65% and 69% of farms, virus and sero-conversion, respectively, were detected in 100% of sampled animals at the first sampling. SARS-CoV-2 was detected, at low levels, in air samples collected close to the mink, on mink fur, on flies, on the foot of a seagull, and in gutter water, but not in feed. Some dogs and cats from infected farms tested positive for the virus. Chickens, rabbits, and horses sampled on a few farms, and wildlife sampled in the vicinity of the infected farms did not test positive for SARS-CoV-2. Thus, mink are highly susceptible to infection by SARS-CoV-2, but routes of transmission between farms, other than by direct human contact, are unclear.

11.
Emerg Infect Dis ; 27(2): 547-551, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-934448

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 has caused a pandemic in humans. Farmed mink (Neovison vison) are also susceptible. In Denmark, this virus has spread rapidly among farmed mink, resulting in some respiratory disease. Full-length virus genome sequencing revealed novel virus variants in mink. These variants subsequently appeared within the local human community.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/veterinary , Mink/virology , SARS-CoV-2/genetics , Viral Zoonoses/transmission , Animals , COVID-19/veterinary , COVID-19/virology , Denmark/epidemiology , Farms , Humans , Viral Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL